A LAYERED CLOAKING STRATEGY TO GENERATE ALLOGENEIC IPSC-DERIVED CD8 T-CELLS THAT EVADE NK CLEARANCE

Fig.1: Notch has developed a novel and potent approach to protect iPSC-derived T cells from the patient's immune system.

Allogeneic clearance limits the persistence of induced pluripotent stem-cell (iPSC) derived CD8 T-cell therapies. iPSC-derived CD8-T cells can be recognized and eliminated by patient CD8 and CD4 T-cells through Human Leukocyte Adhesion (HLA) class I and class II molecules. Every gene of HLA I forms heterodimers with the B2 microglobulin protein that is encoded by β2M gene. CIITA is a transcriptional coactivator essential for all HLA class II expression. Deletion of β2M and CIITA leads to the formation of cells that can completely mitigate patient T-cell mediated clearance. However, patient Natural Killer (NK) cells eliminate cells that do not express HLA class I receptors on their surface, since it is an important inhibitory ligand for NK cell receptors. To address NK clearance, we have designed a unique layered approach to knock-in HLA-E and knock-out adhesion ligands CD58 and ICAM3 to prevent the formation of a stable immune synapse between product cells and patient NK cells. We show that our layered approach outperforms HLA-E KI alone in a NKG2C+ human NK donor pool and has the potential to support immune evasion and product persistence in a broader population of patients than previous approaches.

β2Μ/СΙΙΤΑ ΚΟ CIITA KO β2Μ ΚΟ HLA Class I 0.16 $10^4 \ 10^5 \ 10^6 \ 10^7 \ 0 \ 10^4 \ 10^5 \ 10^6 \ 10^7 \ 0 \ 10^4 \ 10^5 \ 10^6 \ 10^7$ HLA Class I -**** *** ** _____ ⊂ 60 – ▼ ■ 40--20 β2M KO + - + β2M KO + - + β2M KO + - + -CIITA KO CIITA KO - + + CIITA KO - + + -- + + T Cells Only - - - + T Cells Only

Fig.2: Combined β2M and CIITA knockout mitigates T-cell mediated rejection of iPSC-derived T cells.

A) HLA-ABC (Class I) and HLA-DR/DP/DQ (Class II) expression on expanded iPSC-derived T cells with clonal β2M and CIITA knockouts (KOs), measured by flow cytometry. Double KO cells do not express any HLA class I and II. B) Mixed lymphocyte reaction of CTV-labeled allogeneic primary T cells co-cultured with iPSC-derived T cells containing single or double β2M and CIITA KOs at a 3:1 E:T ratio for 6 days. Proliferation of allogeneic CD4+ and CD8+ T cells was tracked by % CTV dilution. Allogeneic CD4+ T cells proliferate when cocultured with β2M KO iPSC-derived T cells that have intact HLA class II expression but not with CIITA KO iPSC-derived T cells, whereas allogeneic CD8+ T cells proliferate when cocultured with CIITA KO iPSC-derived T cells that have intact HLA class I expression but not with \$\mathbb{B}2M KO iPSC-derived T cells. Data points and error bars represent the mean \pm SD; n = 5 T cell donors. *P < 0.05, **P < 0.01 and ***P < 0.001 (RM oneway ANOVA with Dunnett's test).

C) Resulting lysis of iPSC-derived T cells after co-culture with allogeneic T cells. While β 2M and CIITA single KO iPSCderived T cells are lysed after coculture, double KO cells are protected. Data points and error bars represent the mean ± SD; *n* = 5 T cell donors. ****P* < 0.001 and *****P* < 0.0001 (RM one-way ANOVA with Dunnett's test).

A) Schematic of GAPDH, β2M, and CIITA targeted integration sites explored for HLA-E knock-in. For integration at GAPDH, HLA-E was inserted directly downstream of the gene separated by a P2A ribosomal skip sequence to preserve GAPDH expression and co-opt the endogenous promoter for expression. For integration at $\beta 2M$ and CIITA, HLA-E was inserted with a CAG promoter in the gene to disrupt expression of HLA class I and II.

B) Schematic of the three resulting engineered iPSC clonal lines with targeted integration of HLA-E at GAPDH (Design 1), $\beta 2M$ (Design 2), and CIITA (Design 3). All three clonal lines have biallelic knockouts targeting TRAC, β2M, and CIITA loci, with integration of a CD19-CAR.

C) Percent HLA-E expression on iPSCs, CD34 hematopoietic progenitor cells (HPCs), progenitor T cells (ProTs), unexpanded CD8 single-positive T cells (CD8SPs), and expanded CD8SPs (Post-Exp) with targeted integration of HLA-E at GAPDH, β2M, and CIITA loci, measured by flow cytometry (n = 6 clones for GAPDH, n = 1 clone for $\beta 2M$ and CIITA). HLA-E expression at GAPDH and $\beta 2M$ loci is maintained throughout differentiation, whereas expression at CIITA locus is silenced at the end of differentiation but upregulated post-expansion.

D) HLA-E molecules per cell driven by GAPDH, CIITA, and $\beta 2M$ targeted integration on expanded iPSC-derived T cells, as determined by BD Quantibrite PE analysis. Targeted integration of HLA-E at GAPDH locus drives lower expression than integration at CIITA and β2M loci, which may be advantageous for mitigating NKG2C-driven NK clearance. Accordingly, targeted integration of HLA-E at GAPDH (Design 1) was selected for further testing. Lines and error bars represent mean ± SD; n = 3 independent experiments. ***P* < 0.01, ****P* < 0.001 (ordinary one-way ANOVA with Tukey correction).

E) Correlation of NKG2A⁻ NKG2C⁺ phenotype on CD3⁻CD56⁺ NK cells from n = 7 donors with NK lysis of expanded $\beta 2M$ KO iPSC-derived T cells containing targeted integration of HLA-E at GAPDH locus. NK lysis correlates positively with NKG2C expression, suggesting further engineering on top of HLA-E knock-in is needed to comprehensively mitigate NK clearance from different donors.

Fig.4: HLA-E knock-in combined with CD58 and ICAM3 knockouts results in more universal protection of β2M KO iPSC-derived T cells from NK cells.

Siddarth Chandrasekaran, Vignesh Janardhanam, Ian Cardle, Justin Yoo, Yue Zhang-Wong, Julia Bershadsky, Elisa Martinez, April Marple, Laxsha Thaya, Sommer Apelu, Charlie Liu, Dhanya Vijayan, Leanne Jamieson, Lifu Sheng, Elizabeth Csaszar, Emily Titus and Chris Bond

Fig.4 (CONT'D)

D) Whole versus sum of parts analysis of % reduction in NK cell lysis provided by HLA-E KI, CD58 KO, and ICAM3 KO in a β2M-deficient background. IPSC-derived T cells were expanded and engineered with a β2M KO plus HLA-E KI alone, CD58 KO alone, ICAM3 KO alone, or the combination of all three and cocultured with primary NK cells from n = 3 donors at a 1:1 ratio for 72h. Viability of iPSC-derived T cells in the presence and absence of NK cells was monitored daily by flow cytometry, analyzed as reduction in area under the curve, and normalized to a β2M KO only control to measure % reduction in NK lysis. While adhesion molecule KOs in the absence of HLA-E KI were not very protective, the combination of HLA-E KI with CD58 KO and ICAM3 KO provide greater protection than the sum of their parts, suggesting synergy

iPSC-derived T cells.

E) Schematic representation of two iPSC clonal cell lines derived from Design 1 with targeted integration of HLA-E at the GAPDH locus. Each clonal line features bi-allelic knockouts, targeting either CD58 alone or both CD58 and ICAM3 F) Percent HLA-E, CD58, and ICAM3 expression on iPSCs, CD34 HPCs, ProTs, unexpanded, and expanded T cells derived from Design 1 with CD58 and ICAM3 KOs, measured by flow cytometry (*n* = 2 clones). CD58 and ICAM3 KOs result in disruption of protein expression through

all stages of differentiation. G) Representative flow cytometry plots of key phenotypic attributes of iPSC-derived T cells. CD58 and ICAM3 KOs do not impact the differentiation of iPSC-derived T cells.

H) NK cell clearance of expanded clonal iPSC-derived T cells containing layering of β2M KO, HLA-E KI at GAPDH locus, CD58 KO, and ICAM3 KO. Clearance at a 1:1 NK to iPSC-derived T cell ratio was evaluated by tracking iPSC-derived T cell viability daily in the presence and absence of NK cells for up to 96h by flow cytometry and analyzing the difference in viability as % reduction in area under the curve (AUC). The combination of HLA-E KI, CD58 KO, and ICAM3 KO drives increasing protection from NK cell clearance. Lines represent the mean; *n* = 10 unique NK donors colored according to their CMV serostatus as in Figure 4A. ns > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (RM one-way ANOVA with Holm-Šídák correction).

I) Ratio of % NKG2A⁺NKG2C⁺ expression over % NKG2A⁻NKG2C⁺ expression on CD3⁻CD56⁺ NK cells used in the NK clearance assay. NK cell donors comprised a wide range of NKG2A/C ratios. Line represents the mean; *n* = 10 unique NK donors colored according to their CMV serostatus as in Figure 4A.

notchtx.com ASH 2024

SUMMARY AND CONCLUSIONS

- HLA-E knock-in combined with allogeneic synapse disruption provides comprehensive protection of β 2M KO allogeneic iPSC-derived T-cells against a broad and diverse population of donor NK cells.
- Knock out of adhesion proteins that disrupt the allogeneic synapse does not decrease the potency of iPSC-derived CAR-T cells.
- Notch's novel combination of allogeneic edits improves the performance of iPSC-derived CAR-T cells in the presence of co-cultured allogeneic T and NK cells in vitro.
- This work supports the development of scalable, potent, and persistent offthe-shelf allogeneic CAR-T cell therapies for oncology and autoimmune patients