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 u Pharmacokinetic and tumor dynamic profiles were digitized from literature, and PK data 
for Kymriah in B-ALL was generated using a published non-linear mixed effects model by 
Stein et al.2

 u The toggle-switch model was encoded as a system of nonlinear ordinary differential 
equations, and parameters were estimated using particle swarm optimization. Virtual 
populations were generated by Monte Carlo sampling parameters with random CAR-T 
dose and initial tumor burden.

 u Bulk RNA sequencing data1 was TMM normalized and converted to log(counts per  
million) by Voom transformation. Differential gene expression was implemented with  
Limma and gene signature enrichment estimated with single sample GSEA. Gene  
signatures for cell signaling pathways were compiled from PROGENy, BioCarta, Reacome, 
Hallmark, and David, and T cell populations signatures from Fraietta et al.1 and the cell 
atlas of human thymic development.3 Single-cell RNA sequencing was obtained from Bai 
et al.4 and Haradhvala et al.5 and normalized with Seurat and annotated with ProjecTILs.6

 u CAR-T cell expansion and persistence varies widely between patients and is predictive of 
efficacy. What underlies this variance? 

 u We developed a mathematical model of T cell regulatory control wherein transitions  
between memory, effector, and exhausted T cell states are coordinately regulated by 
antigen engagement. We trained this model on clinical data in different hematological 
malignancies and identified cell-intrinsic differences in the turnover rate of memory cells 
and the cytotoxic potency of effectors as the primary determinants of exposure and  
response. 

 u Pre-infusion product transcriptomics confirm these results and predict patient outcomes 
to CD19 CAR-T therapy with better accuracy than standard immunophenotyping.

 u Mathematical modelling predicts, de novo, clinical variance in exposure, covariates of  
response, and the biological mechanisms underlying the pharmacology of CAR-Ts across 
multiple indications.

Model structure, 
parametrization, 
and mechanisms 
differentiating CR, PR, and 
NR populations. 

A Cartoon depiction of the 
model structure.

B Model fits agree with 
reported1 CAR-T and 
B-cell tumor dynamics 
for CR, PR, and NR 
populations.

C PCA plot based on 
the logarithm of the 
best fitting parameters 
colored by population.

D Sorted PC-1 coefficients 
suggest that 𝑇𝐾50 
(threshold for killing) 
and 𝜇𝑀 and 𝑑𝑀 (T 
memory cell turnover)  
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TM: memory T cells
TE1, ..., TEN: effector T cells
TX: exhausted T cells 

B: tumor cells
BA: B-tumor antigen

An antigen toggle-switch model of T cell regulation quantitatively 
describes PKPD behavior of complete, partial, and non-esponding 
(CR, PR, and NR) patient population responses to Kymriah in CLL

Explaining inter-patient variability in Kymriah pharmacokineticsMolecular and cellular features differentiating CR, PR, and NR populations

Single-sample Gene Set Enrichment Analysis (ssGSEA) estimates 
the activity of signaling pathways and enrichment of cell 
populations in pre-infusion CAR-T product transcriptomes1 A,C-F. 
The CR population is enriched in Non-Exhausted T Cells A, matching 
model simulations B, and in T memory cells, confirming model 
predictions. p-values calculated with a two-sample t-test.

Single-cell RNA sequencing of twelve pre-infusion CAR-T 
products4 separated by response. A Distinct complete response 
(CR) non-response (NR), and early relapse (RL) clusters form in 
UMAP space. Annotation of B exhausted cells using ProjecTILs6 
and C CAR-T cell dysfunction signature.7 D Cell type frequencies 
from ProjecTILs show increased CD8+ T cell and decreased CD8+ T 
exhausted cell proportion in CR (**p<0.05: Wilcoxon rank-sum test). 
E Per-cell type GSEA for selected pathways reveals differential gene 
signatures, confirming that cell-intrinsic differences exist in pre-
infusion product transcriptomes despite similar immunophenotypes 
across response groups.
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Kymriah in ALL (Bai 2022)
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Clinical variability in dose, tumor burden, and CR/PR/NR 
archetype account for population variance in Kymriah 
exposure and predict covariates of response to Yescarta.8 

A  Model fits to population mean do not account for  
inter-individual variability (IIV). 

B-C Virtual population simulations with random dose (“+Dose”)
and/or initial tumor burden (“+B0”) replicate IIV in AUC and 
Cmax. 

D-F Virtual CR population simulations replicate reported 
clinical covariates of response to Yescarta in LBCL.

CAR-T dose and initial tumor burden drive clinical variance. 
Grid simulations reveal a nonlinear relationship between CAR-T 
dose and initial tumor burden to response (A AUC) and exposure 
(B Cmax). 

Model extension to Abecma dose response

Application of the modelling framework to a phase I/II dose escalation study of Abecma (a BCMA-targeted CAR-T for multiple myeloma).9 
A-B Model training on phase I dose response data. C-D Model testing with predictive simulations matches phase II data beyond initial fitting 
window.

Response can be more accurately predicted with pre-infusion 
product transcriptomes than immunophenotyping across 
indications.  Distribution of transcriptome-based classifier accuracy 
from 2500 train-test splits compared to immunophenotype and 
null (predictions based on the proportion of CR) test models 
for A Kymriah in CLL, B Kymriah in ALL, C Kymriah in LBCL, and 
D Yescarta in LBCL. ***: p ≤ 10-8, Wilcoxon rank-sum test. E CART 
response scorecard, representing the 28 gene signatures fed into the 
transcriptome classifier, ordered by differential GSEA in Fraietta 2018.  
Bubble size indicates frequency of inclusion in the 2500 models 
after feature selection, color indicates differential enrichment 
between response groups, based on pseudo-bulked GSEA.

Cell-intrinsic attributes predictive of CAR-T 
response can be inferred from pre-infusion 
product transcriptomes

Are differences in pre-infusion product transcriptomes predictive 
of response? A logistic regression-based classifier for the probability 
of complete response P(𝐶𝑅) was developed from the ssGSEA scores 
of the top 28 differentially enriched pathways (CR vs NR) with 
feature selection via a genetic algorithm:
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 = 𝛽0 + 𝛽1𝑠𝑠𝐺𝑆𝐸𝐴1 + … + 𝛽𝑁𝑠𝑠𝐺𝑆𝐸𝐴𝑁log
(P(𝐶𝑅))

(1−P(𝐶𝑅))( )

P: PROGENy
F: Fraietta 2018
H: Hallmark
R: Reactome
A: Albert 2018
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 u Proliferation of memory cells and cytotoxic potential are cell-intrinsic drivers of response

 u Mathematical predictions confirmed via bulk and single-cell RNAseq data analysis

 u Pre-infusion transcriptomes are more predictive of response than immunophenotyping

 u Variability in CAR-T dose and initial tumor burden fully accounts for inter-patient variability in exposure to Kymriah

 u Model simulations could be used to optimize tumor reduction while minimizing Cmax-associated toxicity 

CONCLUSIONS

are the largest sources of variation between CR and NR populations.
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